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Abstract

The interaction between a submerged elastic circular cylindrical shell and an external shock wave is addressed. A

linear, two-dimensional formulation of the problem is considered. A semi-analytical solution is obtained using a

combination of the classical analytical approach based on the use of the Laplace transform and separation of variables,

and finite difference methodology. The study consists of two parts. Part I focuses on the simulation and analysis of the

acoustic fields induced during the interaction. Both the diffraction (absolutely rigid cylinder) and complete

diffraction–radiation (elastic shell) are considered. Special attention is paid to the lower-magnitude shell-induced

waves representing radiation by the elastic waves circumnavigating the shell. The focus of Part II is on the numerical

analysis of the solution. The convergence of the series solution and finite-difference scheme is analysed. The

computation of the response functions of the problem is discussed as well, as is the effect of the bending stiffness on the

acoustic field. The membrane model of the shell is considered to analyse such an effect, which, in combination with

the models addressed in Part I, allows for the analysis of the evolution of the acoustic field around the structure as its

elastic properties change from an absolutely rigid cylinder to a membrane. The results of the numerical simulations are

compared to available experimental data, and a good agreement is observed.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Submerged evacuated shells subjected to an external shock wave are, perhaps, the most extensively studied shock-

interacting engineering structures. A long-term and well-funded interest of the navies world-wide in underwater

explosions and their effect on ships, submersible vehicles, and other offshore structures has been the main reason for

this area of the fluid–structure interaction research to advance more rapidly than others. As a result, the many aspects

of this complex phenomena have been addressed, some better than others, and extensive data was produced to answer

many practical questions necessary to advance marine structures.

The present paper offers another look at the interaction between an empty circular cylindrical shell and a shock wave

propagating in the external fluid. A linear model is employed to simulate the interaction, and both the structural and

fluid dynamics are addressed. Considering the abundant and diverse literature published on the topic, it may appear

that yet another study, especially one that employs a linear model with its inherent limitations, is not a priority.

However, in the author’s opinion, such a study is worth undertaking for a number of reasons.
e front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

cf sound speed in the fluid, ĉf ¼ 1

cs sound speed in the shell material, ĉs ¼ csc
�1
f

h0 thickness of the shell, ĥ0 ¼ h0r�10

Kn modified Bessel function of the second kind

of order n

pa peak incident pressure, p̂a ¼ par
�1
f c�2f

p total pressure in the fluid, p̂ ¼ pr�1f c�2f

p0 incident pressure, p̂0 ¼ p0r
�1
f c�2f

pd diffraction pressure, p̂d ¼ pdr
�1
f c�2f

pr radiation pressure, p̂r ¼ prr
�1
f c�2f

ps pressure on the shell surface, p̂s ¼ psr
�1
f c�2f

r radial coordinate of the polar coordinate

system, r ¼ Rr�10

r0 radius of the shell, r̂0 ¼ 1

R0 radial distance to the source of the incident

wave, R̂0 ¼ R0r�10

SR incident shock wave stand-off, ŜR ¼ SRr�10

t time, t ¼ tcf r�10

v� transverse displacement of the middle sur-

face of the shell, v ¼ v�r�10

w� normal displacement of the middle surface

of the shell, w ¼ w�r�10

� strain in the middle surface of the shell

y angular coordinate of the polar coordinate

system

l exponential decay rate, l̂ ¼ lcf r�10

n Poisson’s ratio

xe
n ‘volume’ response functions

rf density of the fluid, rf ¼ 1

rs density of the shell material, r̂s ¼ rsr
�1
f

R radial coordinate of the polar coordinate

system, r ¼ Rr�10

t time, t ¼ tcf r�10

f total fluid velocity potential, f̂ ¼ fc�1f r�10

f0 fluid velocity potential in the incident wave,

f̂0 ¼ f0c�1f r�10

fd fluid velocity potential in the diffracted

wave, f̂d ¼ fdc�1f r�10

fr fluid velocity potential in the radiated wave,

f̂r ¼ frc
�1
f r�10

ce
n ‘surface’ response functions

ð�Þn sin ny and ð�Þn cos ny denote the harmonics of

(*). Unless stated otherwise, capitalized

symbols denote the Laplace transforms of

the corresponding functions. Other symbols

are defined in the text

S. Iakovlev / Journal of Fluids and Structures 24 (2008) 1077–10971078
First, the linear model employed in the present work has recently been used by the author to simulate the interaction

between a shock wave and a fluid-filled submerged shell (Iakovlev, 2006, 2007). Among other assumptions, it was

assumed that the external and internal fluids have identical properties. Such an assumption allowed for concentrating

on the multitude of wave reflection phenomena without a need to address the effects present due to the difference in the

properties of the fluids at the same time. Unfortunately, it also meant that the most intriguing case of two different

fluids had to be left for future investigation.

In order to approach the two-fluid problem, the internal and external fields will have to be considered simultaneously,

i.e. a complete internal–external analysis of the interaction will have to be carried out. To accomplish that, along with

the available solution for the internal field, a matching (i.e. obtained using the same linear methodology) solution for

the external field will be needed as well. Therefore, solving the external problem is a necessary step before the case of

two different fluids can be approached. Such a solution, to the best of the author’s knowledge, has not yet been

developed.

Second, comparing the results produced by a linear model to experimental data will allow for verification of the

solution developed. More importantly, it will also allow for analysis of the limitations of the linear model as it applies to

the interaction between shells and a specific class of shock loads (weak shock waves and acoustic pulses). Such analysis,

coupled with that of the interaction between the shell and a shock wave in the context of the internal fluid (Iakovlev,

2006, 2007), will allow for a confident use of the present model to simulate the dynamics of more complex shell systems

experiencing shock loads of similar nature.

Furthermore, converged analytical solutions used as benchmarks seem to be quite popular amongst the underwater

explosion community [e.g., Mair (1999b)]. To that end, if the linear model employed proves to be adequate, another

converged analytical solution will be added to a series of solutions that the author set to develop (Iakovlev, 2006) for

possible use as benchmarks. The solution will also be suitable for verification of both structural dynamics codes and

those intended for analysis of the pressure fields induced during the interaction.

Third, it will be possible to study in detail the dynamics of the external pressure field, including both the scattered and

shell-radiated components. Such analysis will allow for a much better understanding of the dynamics of the interaction

between shock waves and elastic structures. For example, even though the radiated pressure is known to significantly

change the resulting shock load on the structure, clarifying its contribution into the total acoustic field, both in terms of
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its magnitudes and the geometry of the radiated field, certainly appears to be of interest. Sequential images of the

external field will also be an informative complement to the many existing studies of the stress–strain states of shock-

subjected cylindrical shells.

The analysis of the external field will allow one to address a number of secondary issues of practical interest as well.

One of the possible issues is considering a scenario where secondary structures are placed around the primary

cylindrical shell. If the geometry of those is such that they do not significantly change the acoustic fields induced by the

primary structure (e.g., cables, small pipes, auxiliary equipment, etc.), then it is reasonable to expect that the model

employed can be successfully used to estimate the shock loading that such secondary structures would experience in the

wake of the response of the primary one to a shock wave.

In order to put the present work in the context of the literature published on shell–shock interaction, we mention

some of the papers devoted to various aspects of the problem, and emphasize what is new in the present study. A much

more comprehensive literature review can be found in Iakovlev (2006).

Even though the diffraction represents only one aspect of the interaction between elastic shells and shocks, it certainly

is an interesting problem on its own, and a large number of studies were devoted to the diffraction of shock waves on

rigid cylinders. Bryson and Gross (1961) presented experimental images of the diffraction on cylinders, as did Heilig,

W.H. (1969), Heilig, G. (1999) and Oakley et al. (1999). Numerical investigation of the diffraction pressure fields was

carried out, for example, by Yang and Liu (1987), Ofengeim and Drikakis (1997), Drikakis et al. (1997), Sun (1998), and

Heilig (1999). A number of earlier publications addressed the surface distribution of the diffraction pressure, mostly

using analytical solutions of the respective linear problems [e.g., Geers (1972), Huang and Wang (1971); some of the

numerical works mentioned presented time-histories of the surface pressure as well]. It appears, however, that the

diffraction field around a shock-interacting shell has not yet been addressed using an analytical solution. The present

paper fills this gap.

A number of publications addressed the interaction between acoustic pulses and shells (or elastic bodies)

experimentally, with the focus on the various waves radiated by the structure. Neubauer and Dragonette (1970), as well

as Neubauer (1968a,b) studied various types of waves radiated by a cylinder and cylindrical shells of various

thicknesses, but considered mostly partial insonification or angular incidence. Ahyi et al. (1998) addressed a variety of

waves radiated by a shell subjected a very short symmetric acoustic pulse, but only considered the very early interaction,

prior to the instant when the incident wave passed over the shell. Merlen et al. (1995) and Latard et al. (1999) visualized

the interaction of an acoustic pulse and an elastic spherical body, and Takano et al. (1997) considered the radiation by

an elastic cylindrical body. It seems, however, that the fully developed shell-radiated wave system (i.e. the radiated field

observed after the elastic waves have propagated around the shell several times) was not addressed for the case of a

symmetric insonification of the entire shell. Analysis of the fully developed radiation [images similar to figures 1 and 2

of Neubauer and Dragonette (1970)] certainly appears to be of interest, and is another goal of the present paper.

A rather limited number of studies were devoted to the numerical simulation of the non-stationary interaction

between cylindrical shells and acoustic pulses [e.g., Voinovich et al. (2001), where, amongst other simulations, the

experimental images by Ahyi et al. (1998) were matched exceptionally well]. It appears, however, that a fully linear

formulation of the problem adopted in the present paper (with its inherent limitations but also with the possibilities it

offers in terms of obtaining an analytical solution) has not yet been used to simulate the complete diffracted–radiated

field around a shock-subjected shell. As was mentioned earlier, such simulation, coupled with the comparison to

experimental data, will be very helpful in determining how significant the limitations of a linear model are.

We also mention that a vast majority of the publications seem to concentrate on either rigid structures or elastic ones. This

is certainly understandable since from the practical point of view, one is usually only concerned with one of the mentioned

scenarios. From the theoretical point of view, however, it appears of interest to look at the ‘evolution’ of the acoustic field

around a structure when its elastic properties change from the absolutely rigid state to the membrane one. Wardlaw and

Luton (2000) discussed how the pressure changes when a rigid structure is replaced with its elastic counterpart, but

considered an explosion inside a cylinder, and concentrated on non-linear effects such as cavitation. In the present work, we

discuss in detail how the external field evolves when the stiffness of the structure changes. As a part of this study, the effect of

the bending stiffness on the total acoustic field is discussed, and shells of different thicknesses are considered.

The publications devoted mostly or exclusively to numerical analysis of analytical solutions of shell–shock interaction

problems are somewhat limited. Some of the recent contributions include studies by Zhang and Geers (1993), Huang

and Mair (1996), and Sprague and Geers (1999) in which the issues pertaining to the series convergence are addressed,

and various convergence improvement techniques are discussed, particularly Cesaro summation. None of the works

mentioned, however, seem to address the convergence of the pressure series inside the fluid domain, and only focus on

the shell surface. The present study includes the analysis of the series convergence both on the shell surface and in the

surrounding fluid. Also, the analysis of the convergence of the finite-difference scheme used at the later stages of the

solution is included as well.
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Last but not least, the approach used here is an extension of the now classical methodology introduced and developed

almost four decades ago [e.g., Geers (1969)]. Even though such methodology was extensively and successfully used over

the years to analyse stress–strain states of and/or pressure distribution on the surface of shock-subjected cylindrical

shells [e.g., Huang and Wang (1970), Geers (1972), Huang (1975, 1979), and Iakovlev (2004)], it seems that it has not

been employed to simulate the acoustic fields around shock-interacting cylindrical shells. In the author’s opinion, it

certainly appears of interest to see how efficient the classical solution is and what results it produces when being

extended to the case of the two-dimensional acoustic fields. Such an extension is yet another goal of the present work.

The study is divided into two parts. The problem formulation and solution, as well as most of the numerical

simulations of practical interest are the subject of Part I, and Part II deals with the numerical aspects of the solution, as

well as addresses the difference between the acoustic fields produced by two different shell deformation models.
2. Mathematical formulation

We consider a thin circular cylindrical shell of radius r0 and thickness h0. We assume that h0=r051 and that the

deflections of the shell are small compared to its thickness, so the linear theory of thin shells is applicable. We also

assume that the fibres of the shell normal to its middle surface remain so after the deformation (the Love–Kirchhoff

hypothesis). The density, Poisson’s ratio, and Young’s modulus of and the sound speed in the shell material are rs, n,
Es, and cs ¼ E1=2frsð1� n2Þg�1=2, respectively. The transverse and normal displacements of the middle surface of the

shell are v� and w�, respectively. The shell is submerged into linearly compressible, irrotational, non-viscous fluid with

density rs, and sound speed cf . The shell is subjected to a step-exponential shock wave propagating in the external fluid

with the decay constant l and the pressure in the front pa.

We consider a two-dimensional simplification of the problem, i.e. ignore the longitudinal variation of the

hydrodynamic pressure and shell displacements, effectively assuming that the shell is infinitely long and is subjected to

an infinitely long shock wave that has the same pressure profile in every cross-section. This is a very significant

simplification, and one may question the value of the results obtained using such a model. However, in the author’s

opinion, the simplified model proposed is quite acceptable in the context of the present study.

Namely, it was shown (Iakovlev, 2004) that when a circular cylindrical shell is subjected to a spherical shock wave with

a relatively distant source, the three-dimensional stress–strain state of the shell is dominated by the transverse stress. In the

same study, it was established that the transverse stress reaches its absolute maximum in the middle cross-section of the

shell (i.e. in the plane coinciding with the plane of symmetry of the incident wave). It was therefore concluded that when

the extremities of the stress–strain state are the primary concern, analysing the middle cross-section is the first priority. In

that light, it was tempting to introduce a simplified two-dimensional model that would only account for the middle cross-

section while ignoring the rest of the shell, and hence be more computationally efficient.

Before such a simplified model could be used for analysis, it was, of course, necessary to compare the results it

produced to those obtained using its three-dimensional counterpart. Such comparison was carried out in Iakovlev

(2007), and the strain state in the middle cross-section of a cylindrical shell subjected to a spherical shock wave was

compared to the strain state obtained using a simplified model, i.e. an infinitely long shell subjected to a shock wave

without the longitudinal variation of pressure (effectively, the middle cross-section of the spherical shock wave was

infinitely extended longitudinally in both directions, thus resulting in a ‘cylindrical’ shock wave). The two strain states

were found to be very similar, and it was concluded that as far as the middle cross-section is concerned, the simplified

two-dimensional model captures the most important features of the three-dimensional stress–strain state very well.

Thus, we can say with a degree of confidence that a simplified two-dimensional model is quite useful, at least when the

stress–strain state is the primary concern. What about the fluid dynamics of the interaction? No explicit comparisons of

the hydrodynamic fields produced by the two models have been made by the author as of yet, and only such comparison

would provide a definitive answer. However, since the stress state is driven by both the fluid dynamics effects and elastic

waves propagating in the shell, a good agreement in the stress–strain states suggests that the main features of the

hydrodynamic fields in the middle cross-section are similar as well for the type of loading considered, i.e. a spherical

shock wave with a distant source.

We also note that two-dimensional solutions have long been regarded as reliable benchmarks for the numerical

modelling of the structural response to underwater explosions [see a compilation of benchmarks by Mair (1999b)],

especially when it comes to more structurally advanced systems [e.g., concentric cylinders of Huang (1979)]. One of the

primary goals of the present work is to develop a solution component that would eventually allow one to address the

complete internal–external field for more complex shell systems, and hence the present study fits well into the big picture

of the current research effort in the area. The present solution is also an extension of a definitively classical solution by

Geers (1969) which is two-dimensional as well.
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Fig. 1. Schematic of the problem (the case of a cylindrical incident wave).
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One, of course, has to clearly understand the limitations of such a simplified model. For example, when the

longitudinal variation of the stresses and pressure is of interest, the simplified model is of no use. The complete three-

dimensional study of the interaction, however, is a more advanced stage of a system’s analysis, and having a preliminary

idea about the main features of the dynamics of the process at earlier design stages is still beneficial. Also, the use of the

simplified model will probably become more questionable when the source of the incident wave is located closer to the

shell. But in that case, the linear model itself becomes increasingly less suitable, thus it is not really an issue.

Summarizing the points made, the author believes that the present simplified model is quite useful and has its

definitive niche. It can be used both as a source of estimates for the peak stresses, and, more importantly, as a source of

information about the overall physics of the interaction. Furthermore, some of the systems for which the author intends

to use the solution introduced here have not been addressed in the shell–shock interaction context as of yet. To that end,

even qualitative results obtained by using the simplifications introduced here appear to be of considerable value.

As for the incident wave, we assume that it is either plane or cylindrical. The source of a cylindrical shock wave is

located at the distance R0 from the axis of the shell, hence the stand-off of the wave is SR ¼ R0 � r0. The polar

coordinate system ðR; yÞ centred on the axis of the shell is employed. The schematic of the problem for the case of a

cylindrical incident wave is shown in Fig. 1; the case of a plane wave is not illustrated but the wave is assumed to

propagate in the same direction (left to right), with the front being perpendicular to the line y ¼ 0. Some issues arising

when such two-dimensional incident loads are used are addressed in Appendix, along with the respective equations for

the incident potential and pressure.

The fluid is governed by the wave equation

r2f ¼
1

c2f

q2f
qt2

, (1)

where f is the fluid velocity potential, and t is time (it is assumed that t ¼ 0 corresponds to the instant when the

incident wave first impinges on the shell).

Under the assumption of the Love–Kirchhoff hypothesis the shell equations in displacements are [Junger and Feit

(1972, p. 237); note that since the normal displacement is considered to be positive outward in that work, and inward

here, some of the terms appear in (2) and (3) with the opposite sign]

1

r20

q2v�

qy2
�

1

r20

qw�

qy
þ k2

0

1

r20

q3w�

qy3
þ

1

r20

q2v�

qy2

� �
¼

1

c2s

q2v�

qt2
, (2)

1

r20
w� �

1

r20

qv�

qy
þ k2

0

1

r20

q4w�

qy4
þ

1

r20

q3v�

qy3

� �
¼ wpjR¼r0 �

1

c2s

q2w�

qt2
, (3)

where k2
0 ¼ h20=ð12r20Þ, w ¼ ðh0rsc

2
s Þ
�1, and p is the total pressure in the fluid. The strain in the middle surface of the shell

is given by

� ¼
1

r0

qv�

qy
� w�

� �
. (4)

The total pressure in the fluid is contributed by the incident, diffraction, and radiation pressure, p0, pd , and pr,

respectively,

p ¼ p0 þ pd þ pr. (5)
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The fluid velocity potential can be written as a sum of three components as well

f ¼ f0 þ fd þ fr, (6)

where f0, fd , and fr are the potentials in the incident, diffracted, and radiated waves, respectively. We note that it often

seems to be more appropriate to refer to p0 þ pd as the ‘diffraction pressure’, not pd alone.

The motion of the shell is coupled to that of the fluid via the dynamic boundary condition on the interface

qfr

qR

����
R¼r0

¼ �
qw�

qt
. (7)

For the diffracted wave we have

qfd

qR

����
R¼r0

¼ �
qf0

qR

����
R¼r0

. (8)

The radiation and diffraction potentials also satisfy the zero boundary condition at the infinity

fr ! 0 and fd ! 0 when r!1, (9)

the periodicity condition with respect to the angular coordinate y, and the zero initial conditions.

Throughout the present work, we are using the dimensionless formulation of the problem. Specifically, we normalize

all variables to r0, cf , and rf . Amongst other advantages, this allows for more convenient numerical values of the time

(e.g., two dimensionless time units correspond to the time necessary for the incident wave to move over the shell of any

radius, as opposed to the small respective dimensional value, in the range of 0.5–5ms for a typical shell structure this

work is concerned with). With some exceptions (the dimensionless time t, radial coordinate r, and displacements v and

w), a hat is used to distinguish a dimensionless variable from its dimensional counterpart. The dimensionless fluid and

shell equations are

r2f̂ ¼
q2f̂
qt2

(10)

and

q2v

qy2
�

qw

qy
þ k2

0

q3w

qy3
þ

q2v

qy2

� �
¼

1

ĉ2s

q2v

qt2
, (11)

w�
qv

qy
þ k2

0

q4w

qy4
þ

q3v

qy3

� �
¼ ŵp̂jr¼1 �

1

ĉ2s

q2w

qt2
, (12)

respectively, where ĉs ¼ csc
�1
f and ŵ ¼ rf c2f r0 ðrsc

2
s h0Þ

�1, which are complemented by the dimensionless boundary

conditions

qf̂r

qr

�����
r¼1

¼ �
qw

qt
(13)

and

qf̂d

qr

�����
r¼1

¼ �
qf̂0

qr

�����
r¼1

. (14)
3. Diffraction and radiation

In order to obtain the diffraction and radiation pressure, we first apply the Laplace transform time-wise to the wave

equation (10) written in the cylindrical coordinates to arrive at

q2F̂
qr2
þ

1

r

qF̂
qr
þ

1

r2
q2F̂

qy2
� s2F̂ ¼ 0, (15)
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where F̂ is the Laplace transform of f̂, and s is the transform variable, and then separate the spatial variables to obtain

the general solution of (15) satisfying the zero condition at r ¼ 1 as

F̂ ¼ AnKnðrsÞ cos ny; n ¼ 0; 1; . . . , (16)

where Kn is the modified Bessel function of the second kind of order n, and An is an arbitrary function of s.

If we express the normal velocity at and normal displacement of the shell surface in a series form,

qf̂0

qr

�����
r¼1

¼
X1
n¼0

bnðtÞ cos ny (17)

and

w ¼
X1
n¼0

wnðtÞ cos ny, (18)

respectively, and impose the boundary conditions, the Laplace transforms of the harmonics of the unknown potential

components can be obtained as

F̂d
n ¼ Bn Xe

n cos ny (19)

and

F̂r
n ¼ sW n Xe

n cos ny, (20)

where Bn and W n are the Laplace transforms of bn and wn, respectively, and Xe
n are the Laplace transforms of the

response functions of the problem xe
n,

Xe
nðr; sÞ ¼ �

KnðrsÞ

sK0nðsÞ
. (21)

The response functions represent the response of the external fluid to the motion of the shell surface and/or to the

scattering of waves by the shell. They do not depend on the parameters of the shell and are completely determined by

the geometry of the problem. The latter feature makes an approach based on the use of the response functions very

attractive from the computational point of view—once they have been computed sufficiently accurately, the interaction

can be easily simulated for any incident wave and any cylindrical shell.

The functions xe
n represent the response anywhere in the fluid, and it is therefore appropriate to refer to them as the

‘volume’ response functions, as opposed to the ‘surface’ ones that only represent the response of the fluid in the

immediate contact with the shell. The ‘surface’ response functions for the present geometry, ce
n, were addressed earlier

[e.g., Iakovlev (2004)], and their Laplace transforms are given by

Ce
nðsÞ ¼ �

KnðsÞ

sK0nðsÞ
. (22)

The ‘volume’ response functions can be easily reduced to their ‘surface’ counterparts by setting r ¼ 1,

xe
nð1; tÞ ¼ ce

nðtÞ. (23)

Taking into account that for the pressure p and fluid velocity potential f we have

p ¼ �rf

qf
qt

or p̂ ¼ �
qf̂
qt

in the dimensionless form

" #
, (24)

and applying some theorems related to the Laplace transform to (19) and (20), we obtain the diffraction and radiation

pressure as

p̂d ¼
X1
n¼0

p̂d
n cos ny (25)

and

p̂r ¼
X1
n¼0

p̂r
n cos ny, (26)
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where

p̂d
n ¼ �

1ffiffi
r
p bnðtÞ �

Z t

0

bnðZÞ
dxe

n

dZ
ðr; t� ZÞdZ (27)

and

p̂r
n ¼ �

Z t

0

d2wnðZÞ
dZ2

xe
nðr; t� ZÞdZ. (28)

Then, the total pressure in the fluid is given by

p̂ ¼
X1
n¼0

p̂n cos ny, (29)

where

p̂n ¼ p̂d
n þ p̂r

n þ p̂0n, (30)

and p̂0n is given by

p̂0 ¼
X1
n¼0

p̂0n cos ny. (31)

As is apparent from (25) to (31), once the response functions xe
n are known, the computation of the diffraction and

radiation pressure anywhere in the fluid is reduced to implementing mostly routine numerical algorithms. Thus, the

computation of the response functions is the first priority of the present study, as well as its biggest mathematical

challenge. Due to the relative complexity of the procedure and a variety of associated numerical issues, it is addressed

separately in Part II, along with other numerical aspects of the problem.

4. Structural dynamics

To compute the dimensionless displacements of the middle surface of the shell, v and w, we consider their series

expansions

v ¼
X1
n¼0

vn sin ny; w ¼
X1
n¼0

wn cos ny (32,33)

and rewrite the shell equations (11) and (12) in terms of the harmonics vn sin ny and wn cos ny. This yields, for every n, a

system of two equations

g2
d2vn

dt2
þ c11n vn þ c12n wn ¼ 0, (34)

g2
d2wn

dt2
þ c21n vn þ c22n wn ¼ ŵ p̂0n þ p̂d

n �

Z t

0

d2wnðZÞ
dZ2

xe
nðr; t� ZÞdZ

� �����
r¼1

, (35)

where

c11n ¼ n2 þ k2
0n2; c12n ¼ c21n ¼ �n� k2

0n3; c22mn ¼ 1þ k2
0n4; g ¼ ĉ�1s . (36)

Eqs. (34) and (35) are complemented by the zero initial conditions for vn, wn, and their first derivatives.

The system (34) and (35) was approached numerically using finite differences. The second derivatives were

approximated using central differences, and the integral term was approximated using the trapezoidal rule. The reason

for choosing such a simple scheme is due to the fact that the systems are ordinary: the computational time is not an issue

here, and the step size can be decreased almost indefinitely (or at least by as much as is needed to ensure that the scheme

is well-converged). The approximation described results in the following finite-difference scheme (its convergence is

addressed in Part II):

viþ1
n ¼ 2vi

n � vi�1
n �

h2

g2
fc11n vi

n þ c12n wi
ng, (37)

wiþ1
n ¼ 2wi

n � wi�1
n þ

2h2

dhhþ 2g2
fdhðp

i
n � hJi

nÞ � c21n vi
n � c22n wi

ng, (38)
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where g ¼ cf =cs, dh ¼ rf g
2r0ðrsh0Þ

�1, h is the time step, and

Ji
n ¼

Xi�1
j¼1

fwjþ1
n � 2wj

n þ wj�1
n g h

�2 ci�j
n . (39)

The resulting displacements were coupled with the analytical solution obtained for the radiation pressure, and the

entire radiated field was simulated. We mention that even though the methodology used resulted in a semi-analytical

solution of the problem, a completely analytical solution is possible as well. However, as discussed in Iakovlev (2006),

the semi-analytical approach is far superior in terms of both its computational attractiveness and its suitability for

extensive numerical simulations when a number of different shells need to be analysed.

We mention that the terms in the shell equations (2) and (3) multiplied by k2
0 represent the bending stiffness. It was

demonstrated in Iakovlev (2007) for the case of a submerged fluid-filled shell that, if the shell is very thin (i.e., if its

thickness-to-radius ratio does not exceed 0.01), neglecting those terms does not result in qualitatively significant change

in the acoustic field. There is no reason to believe that the present situation is any different in that context, but for the

sake of completeness, we first carry out the simulations using the complete formulation that includes the bending

stiffness, and then, in Part II, compare them to the results produced by the model where the bending stiffness is

neglected.
5. Results and discussion

We analyse a steel shell with rs ¼ 7800 kg=m3, cs ¼ 5000m=s, n ¼ 0:30, and the thickness-to-radius ratio

h0=r0 ¼ 0:01, where r0 ¼ 1m and h0 ¼ 0:01m. The shell is submerged into water, rf ¼ 1000kg=m3 and

cf ¼ 1400m=s. Unless stated otherwise, we consider a cylindrical incident shock wave. For the reasons discussed in

detail in Iakovlev (2006), we only consider a shock wave with a large stand-off SR (the distance between the shell and

the wave source), and assume it to be equal to four radii of the shell. The peak pressure in the front of the shock wave,

pa, and the exponential decay constant, l, are assumed to be 250 kPa and 0.0001314 s, respectively. When discussing the

numerical aspects of the solution, and also when introducing one-dimensional graphs specifically intended for use as

benchmarks, we consider a plane shock wave. We do so for the reasons outlined in Appendix, and also because the

plane wave was considered in Geers (1969), the work that largely inspired the present study. The plane wave is assumed

to have the same parameters as the cylindrical one. We continue to use the terminology introduced in Iakovlev (2006),

and refer to the points y ¼ 0 and p as the ‘head point’ and ‘tail point’, respectively.
5.1. Diffraction

The diffraction of a shock wave on a rigid cylinder is, probably, one of the most well-studied shock reflection

phenomena. A large number of high-quality experimental photographs are available, along with extensive numerical

simulations utilizing a variety of models and techniques. It therefore appears worthwhile to consider the diffraction

separately.

Fig. 2 shows the diffraction of the ‘default’ large stand-off shock wave on an absolutely rigid cylinder (certain low-

magnitude non-physical numerical effects discussed in Appendix were eliminated in the shadow zone in a number of

frames; the pressure range shown is not the same for all frames). The dynamics of the diffraction process follows the

classical pattern where a Mach reflection develops. The Mach stems, as well as the triple points, can be easily identified

during the later stages of the interaction. The Mach stems reach the tail point considerably later than the incident wave

would have in the absence of the shell (2.74 versus 2.00), merge there, and start to propagate upstream. The pressure on

the shell surface during this relatively late interaction is considerably lower than in the beginning of the process, but still

is high enough to be taken into account when shock-subjected structures are analysed. During the late interaction, the

Mach stems continue to travel upstream while the associated pressure is decaying. Overall, the diffraction process in the

present, external case is much simpler and easier to analyse than in the case of an internal shock wave reflecting from

the rigid walls of a cylindrical cavity.

We now turn to comparison of the present numerical results with the available experimental data. Surprisingly

enough, experimental images depicting pressure fields induced by the interaction between very weak shock waves and/

or non-stationary acoustic pulses and rigid cylinders are somewhat limited. It appears that the study by Ahyi et al.

(1998), in which a cylindrical shell subjected to an acoustical pulse is considered, is the best reference available for such

interaction [along with some additional experimental images, Ahyi (2006)]. Even though the acoustic field depicted in
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Fig. 2. Dynamics of the diffracted field.
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those images is considerably more complex than the one observed for a rigid cylinder, the scattered wave is clearly

identifiable, so the images can be successfully used for the analysis of the diffracted field.

Fig. 3(a) shows the total diffraction–radiation field induced by a very short acoustic pulse on a submerged cylindrical

shell with the thickness-to-radius ratio of 0.06. Of the several different waves visible in the photograph, for now we shall

only focus on the incident and diffracted waves labelled ‘I’ and ‘SR’, respectively; this means that we are only

considering the waves induced by a shell as a ‘rigid obstacle’, and therefore its thickness is irrelevant. Even though the

image is slightly clipped, most of the wave pattern of interest is still visible. Fig. 3(b) shows the numerically simulated

diffraction field around a rigid cylinder subjected to a similar acoustic pulse. The ‘absolute rigidity’ of the cylinder is
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Fig. 3. Comparison of a numerically simulated diffracted field around an absolutely rigid cylinder, (b), to an experimental

shadowgraph showing the acoustic field around a submerged empty shell induced by a similar shock wave, (a); t ¼ 1:50 [Shadowgraph

(a) is reprinted with permission from Ahyi et al. (1998), Figure 6(b), rAmerican Institute of Physics].
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assumed, i.e. the only structure-induced wave observed is the diffracted one (in any real system, other types of waves

would be detected around an elastic body, e.g., a compressional through wave). We also note that the wave source in

the experiment appears to be closer to the shell than that in the simulated image, but that is not particularly important

for the purposes of verifying the solution. As far as the scattered wave is concerned, the images evidently are in a very

good agreement. In particular, such an important feature of the diffraction as the Mach stems is clearly identifiable in

the simulated images (labelled ‘MS’). We can therefore conclude that the solution obtained for the diffraction pressure

appears to be adequately representing the actual diffracted field. We can also conclude that the linear model employed,

in spite of its limitations, is quite suitable for analysis of the diffraction of very weak shock waves and acoustic pulses.

We note that Neubauer (1968a, b) studied the interaction of acoustic pulses with solid aluminium cylinders in water,

and presented a considerable number of schlieren photographs of the interaction. Neubauer and Dragonette (1970)

considered both solid cylinders and shells, and presented extensive visualizations of the interaction as well. However,

almost all of the images included in the papers noted were for partial insonification, either by a narrow ray at a certain

angular incidence or by a plane acoustic pulse incident on a quadrant of the cylinder, not the entire half of it; the only

image of the full-cylinder insonification is similar to the images by Ahyi et al. (1998), but is of somewhat lower quality.

The present approach can be used to simulate such partial insonification as well, but the solution would have to be

modified to account for the fact that the acoustic pulse is non-symmetric. Such a modification can be easily

accomplished by considering sin–cos series for the pressure and displacements instead of cos-only (or sin-only) series.

The analysis of such interaction, however, is not an objective of the present work.

5.2. Complete diffraction–radiation analysis

Having established a good agreement between the simulated and experimentally observed diffracted fields, we move

on to a considerably more interesting study, i.e. the complete diffraction–radiation analysis of the acoustic field induced

by a shock-responding submerged shell. We note that the dynamics of the acoustic field in the present case is

significantly less complex than that in the case of a fluid-filled shell (Iakovlev, 2006, 2007): all the most interesting wave
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phenomena observed in that case, such as the reflection and focusing of the internal pressure wave, as well as the

particularly complex multiple regular reflection that developed during the late interaction, took place in the internal

fluid. In the present case, the variety of the wave reflection phenomena is quite limited, and the observed wave patterns

are much easier to interpret.

Before we proceed to the analysis of the acoustic field, we note an important feature of the total diffracted–radiated

field. Due to the fact that the structure is now elastic, it is capable of conveying elastic waves at the speed equal to that

of the acoustic speed of the shell’s material. Such waves, once induced at the point of contact between the shell and

incident load, start to radiate into the fluid as they propagate circumferentially in the shell. Due to having the velocity of

propagation that is supersonic relative to the surrounding fluid, the elastic waves induce an acoustic field that is

registered quite far ahead of the incident and scattered waves (even though, once the waves are radiated into the fluid,

they propagate at the same speed as the incident and diffracted ones). Due to this rather unique feature of the shell-

radiated waves described, it appears reasonable to distinguish them from all other waves observed in the system; we

shall refer to them as ‘shell-induced waves’. We note that the magnitude of these waves is much lower than that of the

incident and scattered waves. Nevertheless, they are an essential part of any shell–shock interaction.

We also mention another feature of the acoustic field around a submerged shell that makes visualizing the interaction

more challenging than was the case when the internal field in a fluid-filled shell was considered. Namely, even though in

both cases the shell-induced pressure is low-magnitude, it is negative in the internal fluid, while the (high-magnitude)

pressure in the internal shock wave is positive. It, therefore, was very easy to visualize the dynamics of all the

components of the total acoustic field using the same set of frames: if colour is used and the greens correspond to zero

pressure, the yellows and reds to positive one, and the blues are used to display negative pressure, the shell-induced

wave is always depicted by the tones of blue [e.g., Iakovlev (2007)], or, in halftone images, by the darker grays [e.g.,

Iakovlev (2006)]. In the present case, the pressure in the shell-induced waves is positive, as is the scattered one. Thus, if

the latter is shown in full detail, either in colour or halftones, the former only appears as a scarcely visible wave feature.

It is therefore necessary to consider two different series of plots: one where the high-magnitude components are depicted

in detail at the expense of the low-magnitude features, and the other where the shell-induced waves are shown fully at

the expense of the high-magnitude components. Even though the latter plots do not appear to be particularly realistic

for the fact that the high-magnitude pressure has to be cut off at a certain threshold, they are nevertheless very

informative. Since the propagation of the shell-induced waves has little to do with the propagation of the incident wave,

it does not need to be shown in the low-magnitude plots.

We note that the practical relevance of the two types of plots is quite different. The high-magnitude ones are useful

for estimating the peak pressure around the structure, as well as for the analysis of the contribution of the radiation

pressure into the total acoustic field. The low-magnitude plots are not particularly useful when it comes to estimating

the maximum pressure; however, they are critical to understanding the finer features of the interaction, specifically the

response of the surrounding fluid to the dynamic behaviour of the shell as an elastic medium.

Fig. 4 shows the total acoustic field around a submerged elastic shell for the same instants as Fig. 2; the entire

pressure range is shown. First of all, we notice that even though during the early and mid-interaction the geometry of

the total field is the same as that of the diffracted field alone, the pressure decay behind the front of the scattered wave is

considerably more intense than in the case of a rigid cylinder. This is a well-known fact [e.g., Wardlaw and Luton

(2000), figure 8], but it certainly is comforting to observe it using the present, rather simple linear model [in fact, even

though Wardlaw and Luton (2000) addressed an internal explosion in a cylindrical shell, the initial portions of the

surface pressure time-histories are closely resembling the graphs in Fig. 5 to be discussed shortly].

From the practical point of view, the difference in the intensity of pressure decay becomes a particularly significant

issue when secondary structures are placed around the primary shock-responding one, and the peak loads and/or

impulses experienced by those need to be estimated. As we have just seen, using the diffraction pressure alone for such

estimates will lead to a considerable overestimation of the impact of the scattered wave. Specifically, Fig. 5 shows the

pressure time-histories at the surface (the head point, y ¼ 0 and r ¼ 1:0) and inside the fluid (y ¼ 0 and r ¼ 1:5); the
total pressure for the case of a rigid cylinder is compared to that observed for an elastic shell (the numerical noise due to

series convergence issues was filtered out from some parts of the graphs, see Part II). One can observe that the rates of

decay behind the fronts of the diffracted and complete diffracted–radiated waves are dramatically different, and that the

difference is particularly pronounced inside the fluid domain.

Namely, if we were to define the measure of the impact that a scattered wave has on a secondary structure as the

integral of the pressure over the time interval corresponding to the first positive pressure peak in the scattered wave (a

definition analogous to that of the impulse of a force), then, in the case considered, the impact of the diffracted–radiated

wave on a secondary structure placed on or near the shell surface would be almost four times lower than that of the

diffracted wave when the effects of the shell’s elasticity are neglected; the same impact would be more than seven times

lower when the structure is placed inside the fluid domain. We can therefore conclude that thin-walled elastic structures
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Fig. 4. Dynamics of the complete diffracted–radiated field around an empty submerged shell.
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produce a much less destructive scattered field than rigid ones (here, of course, we assume that the loading is such that

no non-linear effects take place, particularly cavitation and/or interaction with the explosion products). It may be

beneficial to take this observation into consideration when designing industrial structures that are subjected to repeated

shock loads: choosing thin-walled structures over solid ones may reduce overall destructive shock effects experienced by

a multi-element installation.

We also note that, unlike in the case of a rigid cylinder, rather significant negative pressure is observed around an

elastic shell, especially inside the fluid domain. This means that cavitation is a possibility for intense enough incident

loads [e.g., Makinen (1998), Wardlaw and Luton (2000), and Mair (1999a)]. If cavitation does develop, the subsequent
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collapse of the cavitation region or/and separation of the shell from the fluid, both often leading to significant reloading

of the shell, will considerably change the overall dynamics of the process. Of course, the present linear model will not be

suitable for studying such complex, essentially non-linear phenomena. It, however, can certainly be used to give a

preliminary idea about where cavitation is likely to develop, at least at the beginning of the interaction, and to

hypothesize about the likeliest cavitation scenario to occur [a study similar to the one found in Iakovlev (2007)].

In the present case, it appears that the likeliest possibility is cavitation developing in a region adjacent to the shell

surface early in the interaction (the low pressure zone in the snapshots for t ¼ 0:50, Fig. 4). Such cavitation scenario will

likely lead to separation of the fluid from the shell with its subsequent reloading [specific details on want happens when

such separation occurs can be found in Wardlaw and Luton (2000)], and the rest of the process will be quite different

from what is predicted by a linear model (or, for that matter, any other model that does not take cavitation into

account). In particular, that means that the relatively narrow but extensive regions of negative pressure seen later in the

interaction inside the fluid domain (which, if considered in isolation, may produce cavitation as well) may not be

observed after cavitation takes place near the shell surface earlier in the process. Further discussion of the issue is

beyond the scope of this work, and would require a much more sophisticated model and/or experiments.

Another interesting feature of the total field is that during the late interaction, the diffraction termination effects at

the tail point at t � 2:74 (i.e. the merger of the Mach stems and their subsequent propagation upstream) are not clearly

detectable. Again, this happens due to the presence of the negative pressure zone behind the front of the scattered wave

which superposes with the positive pressure in the Mach stems. The result is that the Mach stems appear to terminate

inside the fluid, without reaching the shell.

We now turn to the analysis of the shell-induced field, and first briefly summarize the dynamics of the elastic process

in the shell that induces it. After the elastic wave is originated at the head point at the very beginning of the interaction,

it propagates circumferentially around the shell with the dimensionless velocity given by cs=cf , or 3.57 in the present

case, and reaches the tail point at t � 0:88. At that instant, the two waves propagating in the upper and lower halves of

the shell superpose at the tail point causing a peak of the strain, and then continue to travel upstream. The propagation

of the elastic waves, as well as their superposition, is accompanied by the constant radiation of pressure waves into the

fluid. The surface of the shell moves outward, thus the shell-induced pressure is positive. The process is repeated with

alternating superpositions at the head ðt � 1:76; 3:52; . . .Þ and tail ðt � 2:64; 4:40; . . .Þ points. We note that a brief

analysis of the external radiated field was attempted in Iakovlev (2007), but only the surface pressure was addressed.

Even though that allowed for general understanding of the external radiation, it was not entirely clear what happened in

the fluid which is not in the immediate contact with the shell. That drawback is eliminated in the present work.

We first analyse Fig. 6 which shows the fully developed shell-induced wave system during the late interaction

(t ¼ 4:50, or more than twice the time it takes for the incident wave to move over the shell; the front of the incident wave

is only shown schematically to ensure that other, lower-magnitude features of the field are obscured as little as possible).

Recalling the mentioned timing of the superpositions of the elastic waves travelling in the shell, it is very easy to identify

individual components of what appears to be a complex wave pattern. Five superpositions occur prior to the instant
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Fig. 6. Fully developed radiated (shell-induced) wave system during the late interaction, t ¼ 4:50.
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depicted, and all of them contribute to the acoustic field. The foremost points of the fronts of the respective radiated

waves are labelled ‘F1’, ‘F2’, ‘F3’, ‘F4’, and ‘F5’, which correspond to the superposition times 0.88, 1.76, 2.64, 3.52, and

4.40, respectively.

We note that, even though the elastic waves in the shell travel at a supersonic (relative to the fluid) speed, the radiated

waves themselves do not. As a result, only one shell-induced wave, F1, travels in front of the incident wave, with a

constant backlog of about 1.1. This is a rather interesting result for the applications where the ‘response time’ is

important, i.e. where the possibility of the arrival of a ‘signal’ to a certain point earlier than is expected based on the

acoustical properties of the fluid is of significance. We also note that even though the same superpositions of the elastic

waves occur in the case of a fluid-filled shell, the wave patterns in that case are considerably more complex due to the

multiple reflections of the waves from the internal surface of the shell, and it is much harder to identify the individual

components of the fully developed wave pattern using only one snapshot.

Having gained the understanding of what the shell-induced field is contributed by, we turn to the analysis of its

dynamics, Fig. 7, which shows the formation and development of the wave pattern seen in Fig. 6. The entire process of

the circumferential propagation and superposition of the shell-borne elastic waves, as well as their radiation into the

fluid, are particularly easy to understand now. Along with Fig. 6, these plots are a very informative complement to

the two-dimensional time–space images of the external pressure on the shell surface, as well as those of the strain in the

shell, Iakovlev (2007, figures 11 and 12 (b)). We note that the high-frequency low-magnitude wave detectable just ahead

of the scattered wavefront in Fig. 6, and also scarcely noticeable in the snapshots of Fig. 7, is another very interesting

feature of an elastic shell–shock interaction. The origins and significance of this wave are addressed in detail in Part II.
6. Conclusions

The interaction between a submerged evacuated cylindrical shell and an external shock wave was considered. A two-

dimensional simplification of the problem was formulated, and the validity and limitations of such a simplification were

discussed. A semi-analytical solution of the problem was obtained, and the hydrodynamic field around the structure

was simulated and analysed.

The diffraction of a shock wave on a rigid cylinder was addressed, and the dynamics of the corresponding acoustic

field was visualized. All the classical features of the diffraction, such as the Mach stems and their propagation upstream
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after the termination of the diffraction at the tail point, were observed. Two different incident waves were considered, a

plane one and a cylindrical one, and their limitations and advantages were discussed.

Through comparison with experimental results for the diffraction, it was established that as long as the loading is

limited to acoustic pulses and very weak shock waves, the linear model of the interaction, in spite of its relative

simplicity, is adequate and captures all the important features of the process very well. Similar observation was made

for a submerged fluid-filled shell (Iakovlev, 2006, 2007), and the good agreement with the experiments observed in the

present work is a further indication of the suitability of the approach developed in the author’s recent publications for

modelling shell–shock interaction.
Fig. 7. Dynamics of the low-magnitude shell-induced field.
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The acoustic field around an elastic shell was addressed as well, and both the scattering and radiation by the shell

were considered. The complete diffracted–radiated field was observed to be comprised of two components, the high-

magnitude scattered one and the low-magnitude shell-induced one, the latter representing the radiation by the elastic

waves propagating in the shell. The analysis of the high- and low-magnitude components was carried out separately,

and the fully developed radiated wave system was addressed in detail. It was demonstrated that in the present case of an

empty shell, it is quite easy to identify the components of the radiated field that are induced by the elastic waves on their

multiple passages around the shell, even very late in the interaction.

The contribution of the radiation pressure into the total acoustic field was studied as well, and it was observed that

the pressure decay behind the front of the wave scattered by an elastic shell is much more intense than that in the case of
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a rigid cylinder. Even though a well-known fact, such analysis allowed to quantify the pressure difference for the

particular case addressed. Specifically, it allowed for a preliminary estimation of the impulse experienced by secondary

structures placed around the primary shock-responding one, and it appears that the adverse effects of shock loading on

the secondary structures can be far more severe when the primary structure is rigid than when it is resilient, especially

inside the fluid domain.

The possibility of cavitation in the system was briefly discussed as well, based on the conclusions drawn from the

results produced by the present model. The fluid around the elastic shell was observed to be much likelier to experience

cavitation than that around a rigid cylinder, and it appeared that the likeliest cavitation scenario is that when the

separation of the shell and fluid occurs, followed by the cavitation region collapse and subsequent reloading of the

structure.

From the historical perspective, the present work is an extension of an analytical solution introduced several decades

ago (Geers, 1969) to a point where it can be used to simulate the two-dimensional interaction, not only the one-

dimensional distribution of the pressure on the shell surface. Numerical analysis of the solution, as well as a discussion

of certain theoretical issues and further comparison with experimental data, are the subject of Part II.
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Appendix A. Remarks on the choice of the incident wave

When a three-dimensional interaction is considered, the choice of the incident wave is not an issue: within the realms

of the linear approach, a spherical shock wave with the exponential pressure decay behind the front [e.g., Cole (1948)] is

known to be a reasonably adequate model of the actual incident shock wave generated as a result of a relatively distant

explosion. A plane shock wave with the exponential pressure decay is another possibility which, perhaps, is of lesser

practical value since it is only suitable when the distance between the source of the wave and the shell is very large. One

might expect that in the two-dimensional case the situation is similar. To some extent, this is true; there are, however,

certain issues that one faces when dealing with a simplified two-dimensional formulation of the problem. Those issues

are the subject of this appendix.

The pressure in a spherical shock wave with exponential pressure decay is given by (the dimensional form of the

equations is used throughout this appendix; the derivation of the equation can be found in Iakovlev (2006))

p0 ¼
paSR

R
e�ðt�c�1

f
ðR�SRÞÞl�1Hðt� c�1f ðR� SRÞÞ, (40)

where

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0 þ x2 þ R2 � 2R0R cos y
q

, (41)

pa is the pressure in the front of the wave when it first impinges on the shell, l is the rate of exponential decay,

SR ¼ R0 � r0 is the shock wave stand-off (the distance between the source and the shell), x is the axial coordinate of the

respective cylindrical coordinate system, and H is the Heaviside unit step function. The incident potential is given by

f0 ¼ �
lpaSR

rf R
e�ðt�c�1

f
ðR�SRÞÞl�1Hðt� c�1f ðR� SRÞÞ. (42)

If we want to reduce the problem to its two-dimensional counterpart and only address the middle cross-section of the

shell, but, at the same time, wish to retain as much of the problem’s geometry as possible, we would have to assume that

there is no change associated with the axial coordinate, and to consider a ‘cylindrical extension’ of what is observed in

the middle cross-section. That, in particular, would imply that we would have to consider the ‘middle cross-section’ of
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the three-dimensional spherical wave as the incident load; more specifically, the ‘cylindrical extension’ of the pressure

observed in the middle cross-section would have to be addressed. The pressure in such a wave would still be given by

(40), but the radial distance would be different, i.e. we would have

p0 ¼
paSR

R�
e�ðt�c�1

f
ðR��SRÞÞl

�1

Hðt� c�1f ðR
� � SRÞÞ, (43)

where

R� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0 þ R2 � 2R0R cos y
q

(44)

and

f0 ¼ �
lpaSR

rf R�
e�ðt�c�1

f
ðR��SRÞÞl�1Hðt� c�1f ðR

� � SRÞÞ. (45)

Such transition from a complete three-dimensional model to a simplified two-dimensional one has been carried out in

Iakovlev (2006, 2007), and it has been demonstrated that the results obtained using the latter were qualitatively very

similar to those observed in the middle cross-section of a three-dimensional shell subjected to a spherical shock wave

(assuming that the parameters of the waves did not change). It was therefore concluded that, for practical purposes, a

two-dimensional simplification of the three-dimensional spherical shock wave (referred here as a ‘cylindrical incident

wave’) was an acceptable trade-off, at least when one is primarily concerned with the middle cross-section of the shell:

both the complexity of the model and computational time were reduced dramatically, without compromising the

qualitative validity of the results.

Unfortunately, such transition from three to two dimensions gives rise to a rather serious theoretical issue that may

not be immediately apparent. Namely, in three dimensions, both spherical (produced by a point source) and plane

waves can have an arbitrary functional form [e.g., Courant and Hilbert (1962), pp. 188 and 196], and, therefore, it is

possible to easily model an exponential (or any other, for that matter) decay. In two dimensions, however, a shock wave

produced by a point source, or a so called cylindrical wave, cannot have an arbitrary functional form [Courant and

Hilbert (1962), pp. 194 and 196], and one faces difficulties when modelling an exponential decay using such a wave. Not

less importantly, the equation for the potential in a cylindrical wave is not a two-dimensional reduction (accomplished

by neglecting the axial dependence) of the equation for the potential in a spherical wave (which was assumed to be the

case when a ‘cylindrical incident wave’ was introduced, compare Eqs. (40) and (43)).

Thus, even though the reduced two-dimensional version of the three-dimensional potential in a spherical shock wave

was shown to be very suitable for a simplified (but, nevertheless, physically adequate) analysis of the interaction, it does

not satisfy the two-dimensional wave equation for the potential f0

q2f0

qR2
þ
1

R
qf0

qR
þ

1

R2
q2f0

qy2
¼

q2f0

qt2
. (46)

This appears to be a very significant drawback of the model utilizing a ‘cylindrical incident wave’, and seems to

compromise the validity of the results obtained using such a model. In the present case, however, no major physical

discrepancies have been noticed, and a very good agreement with experiments has been observed (Iakovlev, 2006, 2007).

Why? The reason for such physically adequate results is in the fact that even though the potential given by (45) does not

satisfy the wave equation (46), the error over the entire time–space domain of interest is insignificant. The latter fact was

established through numerical computations carried out over the entire r, y, t domain. The numerical procedure used

was first tested on a plane wave for which, expectedly, it produced the values that were very close to zero. For the

cylindrical incident wave used in the present study, the error was observed to be usually very small, with the exception

of relatively localized regions where it increased significantly but still was in the order of 5% of the maximum

magnitude of the largest term(s) in (46).

However, since the error is not negligibly small, the solution obtained using the cylindrical incident wave exhibits

certain non-physical effects. Even though the magnitude of those effects is very low, there are regions where the physical

inconsistency is obvious. Specifically, it is most pronounced in the shadow zone at the times when the zone is still

unaffected by the diffracted wave (and, therefore, the pressure there should be zero). Fig. 8 shows the diffracted field at

t ¼ 2:40 for (a) the plane (Eq. (47)) and (b) cylindrical incident waves with the same rate of exponential decay,

l ¼ 0:0001314 s. Unlike in the main text on the paper, the halftones are assigned in such a way that even very small

negative pressure becomes noticeable, thus making the discrepancies easy to detect; the overall images, of course, are
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Fig. 8. Comparison of the diffraction fields induced around a rigid cylinder by (a) a plane, Eq. (47), and (b) cylindrical, Eq. (43),

incident waves.
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less realistic for such a choice of halftones. The pressure in a two-dimensional plane incident wave is given by

p0 ¼ pae
�ðtþc�1

f
ðr cos y�r0ÞÞl�1Hðtþ c�1f ðr cos y� r0ÞÞ, (47)

which can also be deduced from (43) if one assumes that R0 !1.

From the physics of the problem, we know that, for any incident wave, there is always a region in the shadow zone

that is not affected by the diffracted wave at instants when, in the absence of the shell, the front of the incident wave

would have already passed over the region in question. One can see that this is indeed so for the plane wave. In the case

of the cylindrical incident wave, however, the pressure is no longer zero throughout the shadow region in question

(labelled ZR). The non-zero pressure observed is definitely not physical, and is present due to the fact that the potential

in the cylindrical incident wave does not satisfy the two-dimensional wave equation.

The mismatch illustrated appears to be the most noticeable discrepancy caused by the use of the two-dimensional

simplification (43). Its magnitude does not exceed 3% of the global maximum of the diffraction pressure, and is small

even relative to the local maximum (about 8% for the instant considered). We emphasize that when the acoustic fields

are visualized in such a way that the halftones are distributed approximately equally between the positive and negative

values of the pressure, the discrepancy in question is much less pronounced. It can also be easily eliminated altogether

(as was done in the images in the main text).

In summary, the author feels that, in spite of the fact that the simplified two-dimensional version of the three-

dimensional spherical wave does not satisfy the wave equation (and, as a result, produces non-physical effects), the

advantages of using such a simplified model considerably outweigh its drawbacks. It produces the results that are close

to what would be observed for a complete three-dimensional model, but requires an incomparably shorter

computational time to do so. At the same time, the non-physical effects produced by the model are at most second-

order.
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